Notes 4 Appendix 2

Asymptotic Result on ) _ dy(n) for k& > 2.
The main result of this section is

Theorem 1 For k > 2

Z dr(n) = Py (logx) + O(xl_l/k logh ™2 z), (1)

n<x
where Py (y) is a polynomial of degree d in y, with leading coefficient 1/d!.
The proof of this proceeds with two lemmas.

Lemma 2 For all integers £ > 0 there exists constants Cy such that

log‘n 1 041 log’
Z . ——€+1log xr+Ci+ 0O .

n<x
for x> xo ({).

Note this generalises the ¢ = 0 case seen in the notes when Cj is Euler’s
constant.

Proof By partial summation
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n<lz n<lz n<t

We estimate ), _, log n by replacing it by an integral

t

Z log‘n = /logZ ydy + O(logé t), (3)

n<t 1

when repeated integration by parts gives a main term of tQ), (logt) for some
polynomial of degree ¢, though this is not required here. Instead, substituting
(3) into (2) gives

T T t

1 ¥ 1 1 £ dt
n T T t
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where g/ (1) < log’t. In the double integral of log® y, interchange the integrals
to get

dt i 1 1 log™e 1 [
/bg Y /t2 4y /log 4 <y :1:) dy [+1 x/log ydy.
1 1

1 y

The integral here cancels the first in (4).

All that remains is to estimate the contribution from the error &, (¢) within
the integral in (4). Because g, (t) < log"t, the integral converges and can be
replaced by the integral over [1, 00),

[a0f = [a0%- [«0%.

x

and this first integral is the constant Cj. For the tail end we have

rodt [, dt logla
/€g<t)t—2 < /logett—Q < =5

by a question on Problem Sheet 3.

Combining we get the stated result. ]
Lemma 3
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Proof Use the binomial expansion

for U > Uy(r).

r
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for U > Uy (r), by Lemma 2. Note that
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by the Binomial Theorem again. Applied within (5) with o = logx and
£ =logU this gives

: 1 _ 1 .
Z (-1)* <Z> 1 (logz) ‘log™t U = ] (log™" z — (logz — log U) H)
=0

1 r+1 r+1
= 1 (log" 'z —log™™" (z/U))
¥ log"t
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z/U t
which gives the stated result. |

Note that a change of variable gives

x r U r
/ log tdt :/ log (x/w)dw,
T 1

JU t w

and this integral has a form closer to that of the sum it is approximating
than the integral shown.



Proof of Theorem by induction. When £ = 2 it has been shown in the
notes that

Z din) =zlogz + (2y—1)x + O(a:l/2) (6)

n<x
which agrees with (1) in this case.
Assume the result holds for d;, for some k > 3.

For the dj; case apply the Hyperbolic Method as

D dia(n) = ) 1xdi(n)

= YD )+ D de(b) Y 1= [U]Y di(b), (T)
a<U b<z/a b<V a<z/b b<V

with U and V' to be chosen to minimise the error terms subject to UV = x.

First term in (7).
For the first sum in (7) we apply the inductive hypothesis as

S S g =Y gpk_l <log g) 40 (Z (g)“/k logh~2 x) . (8)

a<U b<z/a a<U a<

Write P, (y) = Zf;é cp—1,y" for some coefficients c¢j_;,. Then, by

Lemma 3,

x x = log" (z/a)
> P (o) = e e > T
a<U r=0 a<U

T log"t )
= $ch—1,r (/ Oi dt + Z (—1)£ (2) Cylog"* a:)

Second term in(7).

The second sum is

D dp(b) > 1= d’“é“ +0 (Z dk(b)> : (10)

b<V a<z/b b<V
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This error here is O (V logh™* V) from the inductive hypothesis. For the other
term in (10) use summation by parts as

dy(b 1 v dt
I S AURY A ST

b<V b<V L p<t

= Pi(logV)+ OV log" V) (11)

v dt
+ (th;_l (log t) + Ne—1 (t)) t_2’
1

where 7,_, (t) < t'"*log"~'¢, again using the inductive hypothesis. The
integral over this error converges and so we complete it to infinity and bound
the tail end:

v dt o dt o dt
/ Mk—1 (t) 2 = / M1 (t) 2 / M1 (t) 2
1 1 1%
say. And

moa () < | VRS <« 2 (12)
14 13 1% t %

Third term in (7).

U] " di (b) = (U + O(1)) (V Py (log V) + O(V' ¥ 1og" 2 V) |

b<V

by the inductive Hypothesis.

Error terms in (7).
The errors from the first term are O(z'"V/5UY*log" ™ z) from (8) and
O(zUtlog" ' 2) from (9).

The errors from the second term are O (V logk™! V) from (10) and O(mVﬁl/k logh~! V)
from both (11) and (12).

The errors from the third term are O (V logh™! a:) and O (UVlfl/k logh—2 $> '

It is easy to check that, because UV = z, we only have two independent
errors, O(zU ' log"' z) and O(zV = log" 1 V) .

We minimise the errors by equating these two, i.e. U~! = V~1/* that is
V = U*. With UV = « this means U = /¢t and V = gh/(k+1),



Then the overall error in (7) is O (z%/*+V1og" " z)

Main Terms in (7).

We have seen above the main term of the first sum in (8),

k—1 r
T log"t
chk_LT (/ Oi dt + Z (2) Cy logr’g a:) =
r=0 /U
::p/ Py (logt) — +$ch “Z e(;) v (log z)" -t
z/U

We have seen above the main term of the second sum in (8),

1%
dt
2P,y (log V') + x/ tPy_1 (logt) o] + B,
1

where B = [ n,_, (t)t2dt.
And the main term of the third sum in (8) is
UV Py (logV)=xP;_;(logV).
Add and subtract these to find the main term of ) _ diy1 (n) to be

x/ P._1 (logt) — —I—chk ”Z ()Cg(logx) -t 4 B
1

Complicated as it might appear, but this is xx polynomial in logz. We
take it to be the definition of Py (logx). Hence we have shown that

Z diy1(n) =z Py, (logz) + O(xlfl/(kﬂ) log" 1 ) |
n<lx
that is, our result holds for £+ 1. Hence, by induction, it holds for all k£ > 2.

Note that .

Cl— lr
Py logt gt
| Sy

r=0

and it is from here that we see that the leading coefficient, ¢ in Py (log x)

satisfies
Ck—1,k—1

k
where ¢;_1 x—1 is the leading coefficient in P;_; (logz). Continuing

Cr ke =

Cl 1 1
B R
since the leading coefficient in (6), i.e. ¢;; equals 1. [

Ck =

6



