
Notes 4 Appendix 2

Asymptotic Result on
∑

n≤x dk(n) for k ≥ 2.

The main result of this section is

Theorem 1 For k ≥ 2∑
n≤x

dk(n) = xPk−1 (log x) +O
(
x1−1/k logk−2 x

)
, (1)

where Pd (y) is a polynomial of degree d in y, with leading coefficient 1/d!.

The proof of this proceeds with two lemmas.

Lemma 2 For all integers ` ≥ 0 there exists constants C` such that

∑
n≤x

log` n

n
=

1

`+1
log`+1 x+ C` +O

(
log` x

x

)
for x > x0 (`).

Note this generalises the ` = 0 case seen in the notes when C0 is Euler’s
constant.

Proof By partial summation

∑
n≤x

log` n

n
=

1

x

∑
n≤x

log` n+

x∫
1

∑
n≤t

log` n
dt

t2
. (2)

We estimate
∑

n≤t log` n by replacing it by an integral

∑
n≤t

log` n =

t∫
1

log` ydy +O
(
log` t

)
, (3)

when repeated integration by parts gives a main term of tQ` (log t) for some
polynomial of degree `, though this is not required here. Instead, substituting
(3) into (2) gives

∑
n≤x

log` n

n
=

1

x

x∫
1

log` ydy+O

(
log` x

x

)
+

x∫
1

 t∫
1

log` ydy + ε` (t)

 dt

t2
, (4)
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where ε` (t)� log` t. In the double integral of log` y, interchange the integrals
to get

x∫
1

log` y

 x∫
y

dt

t2

 dy =

x∫
1

log` y

(
1

y
− 1

x

)
dy =

log`+1 x

l+1
− 1

x

x∫
1

log` ydy.

The integral here cancels the first in (4).

All that remains is to estimate the contribution from the error ε` (t) within
the integral in (4). Because ε` (t)� log` t, the integral converges and can be
replaced by the integral over [1,∞),

x∫
1

ε` (t)
dt

t2
=

∞∫
1

ε` (t)
dt

t2
−
∞∫
x

ε` (t)
dt

t2
,

and this first integral is the constant C`. For the tail end we have
∞∫
x

ε` (t)
dt

t2
�

∞∫
x

log` t
dt

t2
� log` x

x2
,

by a question on Problem Sheet 3.

Combining we get the stated result. �

Lemma 3∑
a≤U

logr (x/a)

a
=

∫ x

x/U

logr t

t
dt+

r∑
`=0

(−1)`
(
r

`

)
C` logr−` x

+O

(
logr x

U

)
,

for U ≥ U0 (r) .

Proof Use the binomial expansion

logr (x/a) = (log x− log a)r =
r∑

`=0

(−1)`
(
r

`

)
(log x)r−` (log a)` .

For then∑
a≤U

logr (x/a)

a
=

r∑
`=0

(−1)`
(
r

`

)
(log x)r−`

∑
a≤U

log` a

a
(5)

=
r∑

`=0

(−1)`
(
r

`

)
(log x)r−`

(
1

`+1
log`+1 U + C` +O

(
log` U

U

))
,
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for U ≥ U0 (r), by Lemma 2. Note that(
r

`

)
1

`+ 1
=

r!

`! (`+ 1) (r − `)!

=
(r + 1)!

(`+ 1)! ((r + 1)− (`+ 1))! (r + 1)

=

(
r + 1

`+ 1

)
1

r + 1
.

For any α and β we have

r∑
`=0

(−1)`
(
r

`

)
1

`+1
αr−`β`+1 =

r∑
`=0

(−1)`
(
r + 1

`+ 1

)
1

r+1
αr−`β`+1

=
−1

r+1

r+1∑
`=1

(−1)`
(
r + 1

`

)
α(r+1)−`β`

=
1

r+1

(
αr+1 − (α− β)r+1) ,

by the Binomial Theorem again. Applied within (5) with α = log x and
β = logU this gives

r∑
`=0

(−1)`
(
r

`

)
1

`+1
(log x)r−` log`+1 U =

1

r+1

(
logr+1 x− (log x− logU)r+1)

=
1

r+1

(
logr+1 x− logr+1 (x/U)

)
=

∫ x

x/U

logr t

t
dt,

which gives the stated result. �

Note that a change of variable gives∫ x

x/U

logr t

t
dt =

∫ U

1

logr (x/w)

w
dw,

and this integral has a form closer to that of the sum it is approximating
than the integral shown.
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Proof of Theorem by induction. When k = 2 it has been shown in the
notes that ∑

n≤x

d(n) = x log x+ (2γ−1)x+O
(
x1/2

)
(6)

which agrees with (1) in this case.

Assume the result holds for dk for some k ≥ 3.

For the dk+1 case apply the Hyperbolic Method as∑
n≤x

dk+1(n) =
∑
n≤x

1 ∗ dk(n)

=
∑
a≤U

∑
b≤x/a

dk(b) +
∑
b≤V

dk(b)
∑
a≤x/b

1− [U ]
∑
b≤V

dk(b) , (7)

with U and V to be chosen to minimise the error terms subject to UV = x.

First term in (7) .

For the first sum in (7) we apply the inductive hypothesis as

∑
a≤U

∑
b≤x/a

dk(b) =
∑
a≤U

x

a
Pk−1

(
log

x

a

)
+O

(∑
a≤U

(x
a

)1−1/k
logk−2 x

)
. (8)

Write Pk−1 (y) =
∑k−1

r=0 ck−1,ry
r for some coefficients ck−1,r. Then, by

Lemma 3,

∑
a≤U

x

a
Pk−1

(
log

x

a

)
= x

k−1∑
r=0

ck−1,r
∑
a≤U

logr (x/a)

a

= x

k−1∑
r=0

ck−1,r

(∫ x

x/U

logr t

t
dt+

r∑
`=0

(−1)`
(
r

`

)
C` logr−` x

)

O

(
x

k−1∑
r=0

|ck−1,r|
logr x

U

)
(9)

Second term in(7) .

The second sum is∑
b≤V

dk(b)
∑
a≤x/b

1 = x
∑
b≤V

dk(b)

b
+O

(∑
b≤V

dk(b)

)
. (10)
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This error here is O
(
V logk−1 V

)
from the inductive hypothesis. For the other

term in (10) use summation by parts as∑
b≤V

dk(b)

b
=

1

V

∑
b≤V

dk(b) +

∫ V

1

∑
b≤t

dk(b)
dt

t2

= Pk−1 (log V ) +O
(
V −1/k logk−1 V

)
(11)

+

∫ V

1

(
tPk−1 (log t) + ηk−1 (t)

) dt
t2
,

where ηk−1 (t) � t1−1/k logk−1 t, again using the inductive hypothesis. The
integral over this error converges and so we complete it to infinity and bound
the tail end:∫ V

1

ηk−1 (t)
dt

t2
=

∫ ∞
1

ηk−1 (t)
dt

t2
−
∫ ∞
V

ηk−1 (t)
dt

t2
,

say. And ∫ ∞
V

ηk−1 (t)
dt

t2
�

∫ ∞
V

t1−1/k logk−1 t
dt

t2
� logk−1 V

V 1/k
. (12)

Third term in (7) .

[U ]
∑
b≤V

dk (b) = (U +O(1))
(
V Pk−1 (log V ) +O

(
V 1−1/k logk−2 V

))
,

by the inductive Hypothesis.

Error terms in (7) .

The errors from the first term are O
(
x1−1/kU1/k logk−2 x

)
from (8) and

O
(
xU−1 logk−1 x

)
from (9) .

The errors from the second term are O
(
V logk−1 V

)
from (10) andO

(
xV −1/k logk−1 V

)
from both (11) and (12) .

The errors from the third term areO
(
V logk−1 x

)
andO

(
UV 1−1/k logk−2 x

)
.

It is easy to check that, because UV = x, we only have two independent
errors, O

(
xU−1 logk−1 x

)
and O

(
xV −1/k logk−1 V

)
.

We minimise the errors by equating these two, i.e. U−1 = V −1/k, that is
V = Uk. With UV = x this means U = x1/(k+1) and V = xk/(k+1).
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Then the overall error in (7) is O
(
xk/(k+1) logk−1 x

)
Main Terms in (7) .

We have seen above the main term of the first sum in (8) ,

x
k−1∑
r=0

ck−1,r

(∫ x

x/U

logr t

t
dt+

r∑
`=0

(−1)`
(
r

`

)
C` logr−` x

)
=

= x

∫ x

x/U

Pk−1 (log t)
dt

t
+ x

k−1∑
r=0

ck−1,r

r∑
`=0

(−1)`
(
r

`

)
C` (log x)r−` .

We have seen above the main term of the second sum in (8) ,

xPk−1 (log V ) + x

∫ V

1

tPk−1 (log t)
dt

t2
+B,

where B =
∫∞
1
ηk−1 (t) t−2dt.

And the main term of the third sum in (8) is

UV Pk−1 (log V ) = xPk−1 (log V ) .

Add and subtract these to find the main term of
∑

n≤x dk+1 (n) to be

x

∫ x

1

Pk−1 (log t)
dt

t
+ x

k−1∑
r=0

ck−1,r

r∑
`=0

(−1)`
(
r

`

)
C` (log x)r−` +B.

Complicated as it might appear, but this is x× polynomial in log x. We
take it to be the definition of xPk (log x). Hence we have shown that∑

n≤x

dk+1 (n) = xPk (log x) +O
(
x1−1/(k+1) logk−1 x

)
,

that is, our result holds for k+ 1. Hence, by induction, it holds for all k ≥ 2.

Note that ∫ x

1

Pk−1 (log t)
dt

t
=

k−1∑
r=0

ck−1,r
r+1

logr+1 x

and it is from here that we see that the leading coefficient, ck,k in Pk (log x)
satisfies

ck,k =
ck−1,k−1

k
where ck−1,k−1 is the leading coefficient in Pk−1 (log x) . Continuing

ck,k =
c1,1
k!

=
1

k!

since the leading coefficient in (6), i.e. c1,1 equals 1. �
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